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SUMMARY

This paper deals with the efficient numerical solution of semilinear parabolic problems that describe flow
phenomena through non-isotropic porous media. For the time integration of such problems, we propose a
linearly implicit fractional step method that considers function and operator splittings related to suitable
decompositions of the flow domain. The resulting family of elliptic problems is discretized in space by
means of the support-operator technique, obtaining a nine-cell finite difference scheme on a logically
rectangular grid. Owing to the chosen splittings, the totally discrete scheme involves sets of uncoupled
linear systems that can be solved in parallel. Finally, a numerical experiment is included in order to show
the unconditionally convergent behaviour of the scheme. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The transient state formulation that governs water movement through non-swelling porous media
is given by Richards’ equation (cf. [1, 2]). If we consider a non-isotropic porous material subject
to isothermal conditions, a simplified version of such an equation can be expressed in the form

��(x, t)

�t
=div(K (x)grad�(x, t))+g(�(x, t))+ f (x, t), (x, t)∈�×(0,T ] (1)
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together with suitable initial and boundary conditions. The flow domain �⊆R2 is assumed to be a
bounded open set, � denotes the pressure head, K is a 2×2 symmetric positive-definite tensor that
models hydraulic conductivity, g is a smooth non-linear function that may describe, for instance,
root water uptake in soil profiles (cf. [3]) and f is a source/sink term.

In this work, we propose an efficient technique that combines two discretization procedures for
the numerical solution of (1). Firstly, Section 2 introduces a linearly implicit fractional step Runge–
Kutta method for the time integration. As explained there, the function and operator splittings
required by such a method are subordinated to the decomposition of the flow domain into a
set of overlapping subdomains. Next, Section 3 handles the spatial discretization, which consists
of a finite difference scheme derived from the support-operator method. The new algorithm is
formulated for logically rectangular grids, which are naturally involved in the description of certain
geometries, e.g. those ones related to flow problems in stratified porous media. In the last section,
we include a numerical experiment that illustrates the advantages of the proposed method.

2. TIME SEMIDISCRETIZATION

Let us consider � decomposed into the union of m overlapping subdomains, where each one of
them consists of a certain number of disjoint connected components, i.e.

�=
m⋃
i=1

�i where �i =
mi⋃
j=1

�i j such that �i j ∩�ik =∅ if j �=k

Next, we define a smooth partition of unity consisting of m functions {�i (x)}mi=1, where each
function �i :�→[0,1] is defined as follows:

�i (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x∈�\�i

hi (x) if x∈
m⋃
j=1
j �=i

(�i ∩� j )

1 if x∈�i

∖
m⋃
j=1
j �=i

(�i ∩� j )

where

0�hi (x)�1 and
m∑
i=1

hi (x)=1 ∀ x∈
m⋃
j=1
j �=i

(�i ∩� j )

Using this partition of unity, we shall define the following splittings for the spatial differential
operator A(x)≡div(K (x)grad) and function f (x, t) (cf. [4])

A(x) =
m∑
i=1

Ai (x) where Ai (x)≡div(Ki (x)grad) and Ki (x)≡�i (x)K (x)

f (x, t) =
m∑
i=1

fi (x, t) where fi (x, t)≡�i (x) f (x, t)

(2)
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Note that Ki (x) is also a 2×2 symmetric positive-definite tensor at those points lying on subdomain
�i , for every i ∈{1,2, . . . ,m}.

A linearly implicit fractional step Runge–Kutta method with m levels and s internal stages
(cf. [5]), considering the splittings given by (2), reduces the original semilinear parabolic problem
(1) to the following set of linear elliptic problems, one per internal stage:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�k
n(x) = �n(x)+�

k∑
�=1

ai�k�(Ai�(x)�
�
n(x)+ fi�(x, tn+c��))

+�
k−1∑
�=1

am+1
k� g(��

n(x)) for k=1,2, . . . ,s

�n+1(x) = �n(x)+�
s∑

�=1
bi�� (Ai�(x)�

�
n(x)+ fi�(x, tn+c��))+�

s∑
�=1

bm+1
� g(��

n(x))

(3)

for n=0,1,2, . . . ,NT , where NT ≡[T/�]−1 and i� ∈{1,2, . . . ,m} for every �∈{1,2, . . . ,s}. The
semidiscrete solution �n+1(x) approximates �(x, tn+1), where tn+1=(n+1)� and � denotes the
constant time step. Finally, coefficients aik�, b

i
k and ck , for 1���k�s and i ∈{1,2, . . . ,m+1},

depend on the chosen method.

3. SPATIAL DISCRETIZATION AND TOTALLY DISCRETE SCHEME

The totally discrete scheme is deduced from the time semidiscrete scheme (3) by using a finite
difference spatial discretization based on the support-operator method. Such a method, initially
developed in [6] and subsequently discussed in [7], provides a methodology for constructing discrete
analogs of invariant first-order differential operators that appear in Equation (1) (i.e. divergence
and gradient).

Let us first discretize � by means of a logically rectangular grid, whose structure is indexed as
follows: if Nx and Ny are positive integers, then the (i, j)-node is given by its coordinates (xi, j , yi, j ),
for 1�i�Nx and 1� j�Ny . Henceforth, h denotes the spatial mesh size. The spatial discretization
used here considers cell-centred approximations for �n(x), �k

n(x), g(�
k
n(x)) and fi (x, tn) given

by �n,h , �k
n,h , gh(�

k
n,h) and fi,h(tn), respectively, where k∈{1,2, . . . ,s} and i ∈{1,2, . . . ,m}. On

the other hand, we consider nodal discretizations for vector functions wn(x)≡(wx
n (x),w

y
n (x)) and

nodal evaluations for tensors Ki (x) by means of wn,h ≡(wx
n,h,w

y
n,h) and Ki,h , respectively, where

i ∈{1,2, . . . ,m}.
For this approximation scheme, it is natural to use the divergence as the first-order prime

operator (cf. [8]). Based on the invariant definition of the divergence, we can derive a discrete
analog divh of div in such a way that, for i=1,2, . . . ,Nx −1 and j =1,2, . . . ,Ny−1, we obtain
the following expression for a discrete vector wn,h :

(divhwn,h)i, j = ((wx
i+1, j+1−wx

i, j )(yi, j+1− yi+1, j )−(wx
i, j+1−wx

i+1, j )(yi+1, j+1− yi, j )

−(w
y
i+1, j+1−w

y
i, j )(xi, j+1−xi+1, j )−(w

y
i, j+1−w

y
i+1, j )(xi+1, j+1−xi, j ))/(2�i, j )
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where wz
i, j is the (i, j)th component of wz

n,h that approximates wz
n(xi, j , yi, j ) for z= x, y; �i, j

denotes the area of cell (i, j), whose corresponding nodes are (i, j), (i+1, j), (i, j+1) and
(i+1, j+1). Taking into account a discrete approximation of the Gauss’ theorem, together with
the expression of divh , we shall construct the derived operator gradh as the discrete analog of
grad as follows:

(gradxh �n,h)i, j = ((yi, j+1− yi+1, j )�i, j +(yi−1, j − yi, j+1)�i−1, j

+(yi+1, j − yi, j−1)�i, j−1+(yi, j−1− yi−1, j )�i−1, j−1)/(2�i, j )

for i=2, . . . ,Nx −1 and j =2, . . . ,Ny−1, where �i, j =0.25(�i, j +�i−1, j +�i, j−1+�i−1, j−1) and
�i, j is the (i, j)th component of �n,h that approximates �n(xi, j , yi, j ). A similar expression holds
for (grady

h �n,h)i, j .
Next, by considering the discrete tensors Ki,h , it is immediate to obtain a finite difference

discretization of the second-order elliptic operators Ai (x). The resulting discrete operators Ai,h ≡
divh(Ki,h gradh), for i ∈{1,2, . . . ,m}, are symmetric matrices that involve a local nine-cell stencil.
Thus, the totally discrete scheme admits the following formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�k
n,h = �n,h+�

k∑
�=1

ai�k�(Ai�,h ��
n,h+ fi�,h(tn+c��))

+�
k−1∑
�=1

am+1
k� gh(�

�
n,h) for k=1,2, . . . ,s

�n+1,h = �n,h+�
s∑

�=1
bi�� (Ai�,h ��

n,h+ fi�,h(tn+c��))+�
s∑

�=1
bm+1
� gh(�

�
n,h)

(4)

for n=0,1,2, . . . ,NT , where i� ∈{1,2, . . . ,m} for every �∈{1,2, . . . ,s}.
Taking into account the type of splitting (2) considered in the previous section, the linear system

obtained at each internal stage involves the unknowns lying just on one of the subdomains {�i }mi=1.
Moreover, since each subdomain �i comprises mi disjoint connected components, this system
can be immediately decomposed into mi uncoupled subsystems that can be solved in parallel.
A remarkable advantage of this technique, compared with classical domain decomposition methods,
is that no Schwarz iterations are involved in (4).

4. NUMERICAL EXPERIMENT

In this section we test the behaviour of the numerical algorithm on pseudo-random grids. A similar
test is shown in [9] for the classical implicit Euler scheme, combined with the support-operator
technique, in the solution of a class of simpler linear parabolic problems.

Let us consider an equation of type (1) posed on �×(0,T ]≡{x=(x, y)∈R2 :0<x<1, 0<y<
1}×(0,0.01]. Tensor K (x) is defined as K (x)= R(�)D(x)R(�)T, where R(�) is a 2×2 rotation
matrix with angle �=5�/12 and D(x) is a 2×2 diagonal matrix whose diagonal entries are
1+2x2+ y2 and 1+x2+2y2. The non-linear function is chosen to be g(�)=1/(1+�3), whereas
the source/sink term f and both initial and Dirichlet boundary conditions are defined in such a
way that �(x, y, t)=e−2�2t sin(�x)sin(�y) is the exact solution of the problem.
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Figure 1. Decomposition of � in m=4 overlapping subdomains (central plot) and corresponding functions
�i (x, y), for i=1,2,3,4 (corner plots): (a) �1 (x, y); (b) �2 (x, y); (c) �3 (x, y); and (d) �4 (x, y).

We consider a decomposition of � in m=4 overlapping subdomains, each of which consists
of mi =4 disjoint connected components, for i=1,2,3,4 (see Figure 1, central plot). On the
other hand, piecewise functions {�i (x)}mi=1 are defined at the overlapping regions by means
of suitable exponential functions that give rise to a C∞ partition of unity (see Figure 1,
corner plots).

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1131–1138
DOI: 10.1002/fld
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Figure 2. Logically rectangular grids used in the numerical experiment (a) N = 17; (b) N = 33; (c) N = 65.

Next, we use a linearly implicit variant of the fractional implicit Euler method, with four levels
(m=4) and four stages (s=4), for the time integration of our problem. The resulting semidiscrete
scheme is, for n=0,1,2, . . . ,NT ,⎧⎪⎨

⎪⎩
�k
n(x) = �n(x)+�

k∑
�=1

(A�(x)��
n(x)+ f�(x, tn+1))+�g(�n(x)) for k=1,2,3,4

�n+1(x) = �4
n(x)

The spatial discretization is based on the finite difference method described in Section 3. For this
purpose, the flow domain � is first discretized by means of a pseudo-random logically rectangular
grid�N ≡{(xi, j , yi, j )}Ni, j=1 with coordinates xi, j =(i−1)h−0.25h+0.5h Rx and yi, j =( j−1)h−
0.25h+0.5hRy, where h=1/(N−1) and Rx , Ry are pseudo-random numbers generated on the
interval (0,1). Figure 2(a) shows an example of such type of grids for N =17. In order to study
the asymptotic behaviour of the error, we successively refine the original pseudo-random grid by
using the following procedure: starting from a given grid, we add the lines that connect, on each
cell, the centres of the opposite sides. Figures 2(b) and (c) show the first two refinements for the
grid on Figure 2(a).

The combination of the previous discretization procedures gives rise to a totally discrete scheme
whose solution is given by the vector �n,h ∈R(N−1)×(N−1), for n=1,2, . . . ,NT +1. The compo-
nents of �n,h are approximations to the exact solution �(x, tn) at the cell centres of �h . Owing
to the domain decomposition splitting considered for A(x), the linear system obtained at each
internal stage reduces to a set of four smaller uncoupled subsystems that can be easily solved
in parallel. Therefore, the number of unknowns involved in the computation will decrease from
(N−1)×(N−1) to a number between n1×n1 and n2×n2, where n1=(N−1)(1/4+d) and
n2=(N−1)(1/4+2d). For this example, the width of the overlapping regions is assumed to be
2d , taking d= 1

16 . From a practical point of view, as the amount of available processors increases,
each subdomain can be decomposed into a greater number of disjoint components in order to
reduce the actual execution time.

Finally, we include two tables that contain the global errors (upper row) and numerical orders
of convergence (lower row), obtained for different values of N and � when using the maximum
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Table I. Global errors and numerical orders of convergence in time for N =129 and �0=10−3.

� �0 �0/2 �0/4 �0/8 �0/16 �0/32

‖·‖L∞(0,T ;L2(�)) 3.430E−2 2.066E−2 1.178E−2 6.497E−3 3.498E−3 1.847E−3
p2 0.7315 0.8103 0.8582 0.8932 0.9213 —

Table II. Global errors and numerical orders of convergence in space for �=10−7.

N 17 33 65 129 257

‖·‖L∞(0,T ;L2(�)) 4.639E−3 1.911E−3 4.650E−4 1.158E−4 2.893E−5
p2 1.2795 2.0390 2.0056 2.0010 —

norm in time and the L2-norm in space. The method shows unconditional convergence of first
order in time (see Table I) and second order in space (see Table II).

5. CONCLUDING REMARKS

This work describes and numerically tests a new efficient discretization method for the solution
of semilinear transient flow problems through non-isotropic porous media of general geometry.
Our proposal, which is based on an overlapping domain decomposition technique using a smooth
partition of unity, reduces the original problem to the solution of various sets of parallelizable linear
systems. As a difference with respect to existing domain decomposition methods, artificial boundary
conditions are not imposed on each subdomain and, hence, no Schwarz iterative procedures are
needed in the computation. Moreover, regarding other classical approaches (e.g. the combination
of a Runge–Kutta method with standard spatial discretization schemes), we obtain an efficient
algorithm that explicitly handles non-linear reaction terms and is naturally adapted to non-Cartesian
geometries, showing both unconditional convergence and a significant reduction in the actual
execution time.
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3. S̆imůnek J, Hopmans JW, Vrugt JA, van Wijt MT. One-, two- and three-dimensional root water uptake functions

for transient modeling. Water Resources Research 2001; 37(10):2457–2470.
4. Portero L, Bujanda B, Jorge JC. A combined fractional step domain decomposition method for the numerical inte-

gration of parabolic problems. Lecture Notes in Computer Science, vol. 3019. Springer: Berlin, 2004; 1034–1041.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1131–1138
DOI: 10.1002/fld
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